Tropical areas: geography and abiotic conditions

The tropics are BIG: they only look small in Mercator projection

DR Congo in Mercator projection at different latitudes

Mercator projection

Equal-area projection

The tropics are BIG: they only look small in Mercator projection

Apparent Relative Land Area Mercator projection

True Relative Land Area Equal-area projection

The tropics are HOT

Latitudinal trends in temperature

No change in temperature in a wide belt around the equator

Latitudinal trends in mean temperature, and mean annual range of temperature

Clarke & Gaston 2006, Proc. R. Soc. B 273:2257

more than 10 times greater at the equator than at mid latitudes

Annual Growing Degree Days

Data taken from: CRU 0.5 Degree Dataset (New et al.)

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

No of days x daily mean temperature – base temperature 5°C

Fig. 4.11. Latitudinal distribution and seasonal movement of the inter-tropical convergence zone (ITCZ), (a) at all longitudes (H = high pressure), (b) at longitude 32° E, with associated shifts over latitude of solar zenithal position (declination) and distribution of rainfall. Modified from Dhonneur (1985) and Griffiths (1972a).

Movement of ITCZ

Latitudinal profile of radiation

Fig. 2.4. Latitudinal profile of annual sum of global radiation $(kJ^{-2}yr^{-1})$ and its components. (After Sellers, 1965.)

January

http://www2.palomar.edu/users/pde en/animations/23_weatherpat.swf

ITCZ

July

January July

Monsoon

Dana Ellyn: Monsoon season

Tropic of Cancer

PACIFIC

© 2002 Brooks/Cole - Thomson Learning

El Nino

Normal Pacific circulation

El Nino event

http://www.bom.gov.au/climate/ahead/model-summary.shtml

(a) NORMAL OCEANOGRAPHIC CONDITIONS

(b) EL NIÑO CONDITIONS

Temperature anomalies in Jan 98 - a strong El Nino event

Satellite-only SST Anomalies for January, 1998

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

SST Anomalies (°C)

© Copyright Australian Bureau of Meteorology

03 JUN 2015

Rainfall deficit/surplus during a strong El Nino event in 1997

El Nino fires

Variability in temperature and rainfall (Borneo lowlands)

Fig. 7.3 Daily maximum, minimum and mean temperatures and daily rainfall at Long Pala, Gunung Mulu, Sarawak, during 1977-78. After Walsh (1982a).

Fig. 7.15 Major droughts and annual frequency of dry months" (<100 mm rain) at Sandakan, Sabah, 1879-1990. There are no data for the years 1897-1901 and 1941-46.

Latitudinal gradients in the amount and variability of rainfall

Total precipitation Annual mean mm/day 50 +0. 35 29 23 17 13 10 8 6 2 +0 +0. 0.2

Total precipitation

Evaporation minus precipitation: water surplus or deficiency

Evaporation minus precipitation

Annual Runoff

Data taken from: UNH-GRDC Composite Runoff Fields v1.0

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Mean annual potential evapotranspiration

Mean annual actual evapotranspiration [1982-2009]

Zhenzhong Zeng et al 2012 Environ. Res. Lett. **7** 014026

Evapotranspiration

Data taken from: Willmott and Matsuura (2001)

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Potential Evapotranspiration

Data taken from: Willmott and Matsuura (2001)

Atlas of the Biosphere

Center for Sustainability and the Global Environmen University of Wisconsin - Madiso

Potential evapotranspiration

Actual evapotranspiration

Water surplus/deficit

Walter climate diagram: generic

Example of a climate diagram for Lomie in Figure 1.8 Cameroon. The symbols and figures on the diagram have the following meaning: (a) station name; (b) station altitude; (c) number of years of observations (first figure: temperature; second figure: rainfall); (d) mean annual temperature; (e) mean annual rainfall mm; (f) mean daily minimum of coldest month; (g) lowest temperature recorded; (h) mean daily maximum of warmest month; (i) maximum temperature recorded; (j) mean daily temperature range; (k) graph of monthly mean temperatures (scale divisions are 10°C); (I) graph of monthly mean rainfall (scale divisions are 20 mm); (m) drought period; (n) humid period; (o) monthly rainfall greater than 100 mm (scale 1/10 that of rainfall) (after Walter 1971 with kind permission from Gustav Fischer Verlag, Stuttgart 1991 © Spektrum Akademischer Verlag,

2.1. Tropical rain forest, distribution and climate. (After White 1983; Whitmore 1984a; Walter and Lieth 1967.)

The Climate Diagrams show dry periods as dotted and rainy periods as hatched (or where monthly rainfall exceeds 100 mm shown black at 1/10 scale). Long-term mean annual rainfall (mm) is shown in figures. Dry periods which occur irregularly scattered through the year do not show up on these diagrams because they are based on long-term means.

Net Primary Productivity

Data taken from: IBIS Simulation (Kucharik, et al. 2000) (Foley, et al. 1996)

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Global NPP - Net Primary Productivity

Net Primary Productivity (kgC/m²/year)

Productivity of world ecosystems

	net PP	Area		biomass v	world biomass
habitat	g/m ²	<u>(ha x 10⁸)</u>	_World NPP_	kg/m	bill. ton
tropical rain forest	1800	24.5	44.1	45	765
temperate forest	1250	12.0	15.0	65	386
savanna	700	15.0	10.5	4	60
temp. grassland	500	9.0	4.5	1.6	14
desert	70	18.0	1.3	0.7	13
cultivated land	650	14.0	9.1	1	14
swamp and marsh	2500	2.0	5.0	15	30
lake and stream	500	2.0	1.0	.02	.05
Total Continent	773	149	115.0	12.3	1837
continental shelf	360	26.6	9.6	0.01	0.27
open ocean	125	332	41.5	.003	1.0
algal beds and reefs	2500	0.6	1.6	2	1.2
Total Marine	152	361	55.0	0.01	3.9

Potential Vegetation

Data taken from: Ramankutty and Foley 1999

Atlas of the Biosphere

Center for Sustainability and the Global Environment University of Wisconsin - Madison

Actual Evapotranspiration is a good predictor of terrestrial net primary production as it combines the influences of temperature and water

Potential evapotranspiration - the best predictor of species richness

Hurricanes: a common tropical disturbance

Fig. 7.16 Changes in cyclone frequency in the Lesser Antilles during the period 1640-1989. After Walsh & Reading (1991).

Centers of volcanic activity

