Mechanisms maintaining high species diversity in tropical rainforests

Global diversity maxima for vascular plants

Table 1. The communities used as the richest in vascular plant species at a range of spatial grains.

Area $\left(\mathrm{m}^{2}\right)$	Richness	Method	Community	Region	References
0.25	44	Rooted	Semi-dry basiphilous grassland	Czech Republic	Klimeš et al. (2001)
1	89	Rooted	Mountain grassland	Argentina	Cantero et al. (1999)
10	98	Shoot	Semi-dry basiphilous grassland	Romania	Dengler et al. (unpubl.;
16	105	Shoot	Semi-dry basiphilous grassland	Czech Republic	Z. Otypková (unpubl.)
25	116	Shoot	Semi-dry basiphilous grassland	Czech Republic	Z. Otypková (unpubl.)
49	131	Shoot	Semi-dry basiphilous grassland	Czech Republic	Z. Otypková (unpubl.)
100	233	Rooted	Tropical lowland rain forest	Costa Rica	Whitmore et al. (1985)
1000	313	Rooted	Tropical lowland rain forest	Colombia	Duivenvoorden (1994)
10000	942	Rooted	Tropical rain forest	Ecuador	Balslev et al. (1998)

J. Veg. Sci. 23 (2012) 796-802
Plant species richness: the world records Wilson JB et al

Fig. 7.16 Rank-abundance patterns of tropical and temperate forests: A. remperate montane (subalpine) forest (Smoky Mountains, Tennessee); B, temperate moist forest (Smoky Mountans, Tennesvee): C, tropical wet forest (Manaus, Brazil); D, tropical dry forest (Cuanacaste. Costa Rica). (Atter Hubbell 1979.)

Latitudinal gradient in species diversity woody plants with $\mathrm{DBH}>10 \mathrm{~cm}$ in 1 ha forest plots

Novotny et al. 2006, Science

1 ha of lowland rainforest $=150-300$ tree species with $\mathrm{DBH}>10 \mathrm{~cm}$

Fig. 2.28. Species area curves for tropical lowland evergreen rain forests. (After Whitmore 1984a and Genry 1988b).

$\mathrm{S}=\mathrm{c} \mathrm{A}^{\mathrm{z}} \quad \log \mathrm{S}=\log \mathrm{c}+\mathrm{z} * \log \mathrm{~A} \quad \mathrm{Z}_{3}$

CONDIT, R., et al. (2005). "Tropical tree alfa-diversity: Results from a worldwide network of large plots." Biol. Skr. 55: 565-582.

Slope of log-log species accumulation curves depends on spatial scale

Fig. 4 Slope of \log-log species-individual curves (z-values) for three 50 -ha plots and from 50 -ha plots to larger regions.

Alwyn Gentry's plots: $2 \times 50 \mathrm{~m}=0.1$ ha DBH $>2.5 \mathrm{~cm}, 226$ plots

Start of the most successful ecological research in tropical botany: in 1980, Stephen Hubbell and Robin Foster had a good inventory

1 ha stems with $\mathrm{DBH}>5 \mathrm{~cm}$
~1,000 stems

50 ha stems with $\mathrm{DBH}>1 \mathrm{~cm}$
~300,000 stems

Barro Colorado Island:

 the first 50-ha plot

BCI 50 ha plot

BCI 50 ha plants $\mathrm{DBH}>1 \mathrm{~cm}$

Forest Dynamics Plots

- Large scale (16-52 ha)
- All stems $\geq 1 \mathrm{~cm}$ mapped, measured, tagged, and identified to species
- Entire plot recensused every 5 years
- Standardized method used by all CTFS research sites

The Center for Tropical Forest Science network

Current and projected future (2050) mean annual temperature and precipitation of CTFS plots

TrRF, tropical rain forest; TrSF/S, tropical seasonal forest/savanna; SD, subtropical desert; TeRF, temperate rain forest; TeSF, temperate seasonal forest; W/S, woodland/shrubland; TeG/D, temperate grassland/desert; BF , boreal forest; T, tundra

Quadrats (20 mx 20 m) \& Subquadrats ($5 \mathrm{~m} \times 5 \mathrm{~m}$)

1,250 quadrats \&
 20,000 sub-quadrats
 in 50 hectares

20×20 survey principals

Quadrat Map

Quadrat: ©! \boldsymbol{O}
Date (day/mo/vr): $30 / 64 / 9009$
Checked by \qquad

Tan sequence: 0157. to 029 . Sheet $\frac{14}{-}$ of 4

288,204 plant stems with $\mathrm{DBH}>1 \mathrm{~cm}$, 536 species

500 kg of aluminium tags, 50 km of copper wire

Landsat satellite image of 50 ha plot in Wanang Papua New Guinea

Wanang 50ha Plot

Wanang 50ha Plot

Wanang 50ha Plot

Celtis latifolia 3.4% of all stems

Ficus
7.7% of all stems

\square Acanthaceae	\square Annonaceae	\square Apocynaceae	\square Arecaceae	\square Burseraceae
\square Cannabaceae	\square Clusiaceae	\square Daeocarpaceae	\square Euphorbiaceae	Fabaceae
Gnetaceae	\square lcacinaceae	\square Lauraceae	\square Loganiaceae	\square Malvaceae
\square Meliaceae	\square Monimiaceae	\square Moraceae	\square Myristicaceae	\square Myrtaceae
\square Nyctaginaceae	\square Oleaceae	\square Pentaphylacaceae \square Phyllanthaceae	\square Pittosporaceae	
\square Podocarpaceae	\square Polygalaceae	\square Rosaceae	\square Rubiaceae	\square Salicaceae
\square Sapindaceae	\square Sapotaceae	Simaroubaceae	\square Stemonuraceae	

Wanang:

 $20 \times 20 \mathrm{~m}$ plot DBH > 1 cm 34 plant families

modus

$81-90$ species per $20 \times 20 \mathrm{~m}$ plot DBH > 1 cm

Wanang, Papua New Guinea

Number of tree species
Dominant tree species
Area (ha)
Middle elevation (m)
Mean temp. $\left({ }^{\circ} \mathrm{C}\right)$
Annual prec. (mm)
Years of census
Last tree count DBH threshold (cm)

Fagus sylvatica

25	50
780	120
6.2	25.8
866	4000
2012	$2010-2$
64345	288204
1	1

Tree density: stems per ha
2,574
5,764

How can there be be hundreds of tree species coexisting in tropical forests when they all compete for the same solar energy and nutrients?

What prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

What prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

> Each species is limited by a different resource [niche differentiation]

The environment is variable, changing direction of competition [tree gap dynamics]

Immigration prevents competitive exclusion [non-equilibrium community composition]

Species do not have opportunity to compete [recruitment limitation]

Rare species are demographically favoured [density-dependent mortality, predation and parasitism]

tre I Schematic ecological range, in the wet zone forests of Sri lanka, of the species of eat. section Doona. Key: a. Shorea cordjfolia b. S. gardneri c. S. zevianica d. S. is e. S. trapezifolia f. S. megistopholla g. S. dissicha h. S.worthingtonii i. S. coniftora

SHOREA

Niche differences and environmental heterogeneity

A. Sandy loam (S. acuta)

B. (S. amplexicaulis)

C. Fine loam (S. xanthophylia)

D. Clay (S. inappendiculata)

E. Generalist (S. ochraceae)
increasing fertility and moisture:
white, sandy loam
dark green, clay
in Lambir Hills

Fig. 2 Topographic map of the 25 -ha plot, with 2 -m contour intervals. Numbersmarking each line are metres above sea level. Six habitats are indicated: valley (blue), low-slope (green), high-gully (dark grey), upper-slope (light grey), ridge-top (yellow), and secondary forest (white). Axes are marked in metres; north is up.

Distribution of plants with respect to topography and habitats Lowland rainforest, Yasuni National Park, Peru

Valencia, R. et al. 2004. Journal of Ecology, 92,

Habitat preference of tree species:
blue - significant red - not significant

A: valley x upper slope

B: mid-slope x valley

Tropical forests: do ecologically similar species occur together, or avoid each other?

Habitat filtering:

should select for particular trait values
trees with low SLA (specific leaf area) grow on ridge tops, while valleys have species with high SLA within 25 ha forest plot in Yasuni. Each habitat has smaller range of SLA values than expected for random distribution of species.

Coexistence of dissimilar species:

should select for variability in trait values
Within each habitat, tree species co-occurring within a 20x20 m quadrat had wider range of SLA than expected under random distribution of trees among quadrats.

What prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource [niche differentiation]

The environment is variable, changing direction of competition [tree gap dynamics]

Immigration prevents competitive exclusion [non-equilibrium community composition]

Species do not have opportunity to compete [recruitment limitation]

Rare species are demographically favoured [density-dependent mortality, predation and parasitism]

Intermediate Disturbance Hypothesis

Two possible mechanisms: disturbance

- removes dominant species opening thus an opportunity for others
- creates new habitat [for pioneer spp.]

Bongers et al. 2009: The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters,12: 798-805

LONGEVITY

FIGURE 25.2. Diagrammatic classification of tree species according to maximum growth rate (slow v. fast) and projected lifespan (short v. long). Group I: understory species, Group II: slow-growing subcanopy species, Group III: fastgrowing, shade-tolerant canopy and subcanopy species that respond opportunistically to increased light levels; Group IV: putative shade-intolerant canopy and subcanopy species.

Problem:

pioneer trees always represent only small \% of the total diversity

Rainforests are dynanic

Annual mortality of trees with $\mathrm{DBH}>10 \mathrm{~cm}: 0.5-2.7 \%$

Dynamic forests are more diverse: the mean mortality matters

Fig. 1. (A) Tree species richness vs. dynamism (mean of annual mortality and recruitment). (B) Tree species richness predicted by multivariate regression model vs. observed tree species richness. o, Sites in South-East Asia; $\boldsymbol{\square}$, sites in Amazonia; X, sites in "Other" phytogeographical regions (Africa, Australia, and Central America). See Table 1 for complete site descriptions, Table 4 for multivariate model.

Demographic differences facilitate species richness: more species would coexist in plots with higher variability in growth and mortality among species - not confirmed in 50-ha plots

Range of sapling demographic rates (mortality, growth) for tree species within a community versus the number of species at the site. The range is the logarithm of the ratio between the 97.5 and 2.5 percentiles of the fitted distributions

Variability in mortality \& growth does not matter

Condit, R et al. (2006). The Importance of Demographic Niches to Tree Diversity." Science 313: 98.

What prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource [niche differentiation]

The environment is variable, changing direction of competition [tree gap dynamics]

Immigration prevents competitive exclusion [non-equilibrium community composition]

Species do not have opportunity to compete [recruitment limitation]

Rare species are demographically favoured [density-dependent mortality, predation and parasitism]

Fig. 4 The transitory maintenance of community diversity by chance (vertical axis) decays rapidly as the proportion of deaths determined by chance declines and the proportion determined by species-specific causes increases (horizontal axis). Hubbell (1979) simulated the indicated conditions. In contrast, Yu et al. (1998) simulated conditions similar to those at the opposite extreme along the horizontal axis. I used annual probabilities of mortality observed for different tree species on BCl (Condit et al. 1995) for species-specific deaths and equal probabilities for every individual regardless of species for chance deaths and for all births. Following Hubbell (1979), the simulated community included 1,600 trees initially divided among 40 equally abundant species with 160 tree deaths per model iteration

Figure 1. Decline in Shannon-Wiener species diversity in simulated neutral communities composed of ecologically equivalent species. Simulations were run for 10,000 time steps, where 10 death/replacement events constituted a single time step. Initial abundances of species were identical within each of ten local communities. Species diversity was calculated at each time step for each community and then averaged across communities. Higher migration rates slow the decline in species diversity.

Mass effect

 (immigration) slows down loss of species from the community due to competitionWhat prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource [niche differentiation]

The environment is variable, changing direction of competition [tree gap dynamics]

Immigration prevents competitive exclusion [non-equilibrium community composition]

Species do not have opportunity to compete [recruitment limitation]

Rare species are demographically favoured [density-dependent mortality, predation and parasitism]

Number of Species Per Trap

O. Galderon for counting and identifying $>10^{\circ}$ seeds in the seed traps over the years.

Seed traps at BCI:

evidence for dispersal limitation,

or most of the tree species does not get to most of the places most of the time

Fig. 4. Evidence for dispersal limitation in BCl trees from a 10-year seed trap study using 200 traps in the 50-ha plot. Seeds of a total of 260 species of the 314 species in the plot census were collected at least once. (A) Frequency distribution of the number of species captured per trap during the 10 -year trapping period (1987-96). The average number of species per trap was 30.8 ± 7.5 SD. (B) The total number of traps into which each species dispersed at least one seed during the 10-year trapping period.

Hubbell et al. 1999. Science 284:554

20x20m plot in Wanang DBH>1cm

220 stems
85 species 40 singletons

Most common species:
 16 stems (7.3\%)
 Aphanamixis polystachia

85 spp from the species pool of 536 spp (15.9\%)

3,570 locally possible pair-wise interactions from the total of 143,380 (2.5\%)

Aphanamixis polystachia

(Meliaceae): the most common tree sp.

Nearest neighbours:
 4 conspecific trees and 9 other spp

Aphanamixis polystachia 4
Cryptocarya multipaniculata 2
Maniltoa megalocephala 2
Pittosporum sp. 2
Actinodaphne nitida 1
Articarpus sepicanus 1
Harpulia longipetala 1
Macaranga punctata 1
Mastixiodendron pachycladus 1
Planchonella xylocarpa 1

What prevents a single "superman" tree species, best adapted to local conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource [niche differentiation]

The environment is variable, changing direction of competition [tree gap dynamics]

Immigration prevents competitive exclusion [non-equilibrium community composition]

Species do not have opportunity to compete [recruitment limitation]

Rare species are demographically favoured
 [density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447-473
Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.

Negative density-dependency: four mechanisms

- Intra-specific self-thinning
- Inter-specific competition
- Mortality due to density-responsive pests/pathogens
- Mortality due to distance-responsive pests/pathogens

Yoda's power law
mean plant biomass $=\mathrm{c} *$ density $^{-3 / 2}$
$\mathrm{W}^{2 / 3} * \mathrm{~N}=\mathrm{constant}$

Density-dependence of reproductive rate $[\mathrm{r}]$ and species coexistence

Abundance
two species differ in their r , which is density independent species with higher r competitively excludes the other species

Abundance

Abundance
two species differ in their r , which is density dependent two species coexist at densities where they have identical value of r

The roots of social inequality problem: the dynamics of money is positively density dependent

BARCLAYS

Current interest rates

Balance

Gross pa\%

0.25
0.40
£25,000 - £49,999
£50,000 - £99,999
$£ 100,000+$

$$
N_{t+1}=N_{t} *\left(r_{1}+10^{-18} * N^{3}-5^{*} 10^{-13} * N^{2}+7 * 10^{-8} * N\right)
$$

Distribution of Wealth in the U.S., 2001

$N_{t+1}=r N_{t}-r N_{t}^{2}$
$N_{t+1}=r * N_{t}^{*}\left(1-N_{t}\right)$

$\mathrm{N}_{\mathrm{t}+1}=\mathrm{r} \mathrm{N}_{\mathrm{t}}-\mathrm{rN} \mathrm{N}_{\mathrm{t}}^{2}$
$N_{t+1}=r^{*} N_{t}^{*}\left(1-N_{t}\right)$

Simple mathematical models with very complicated dynamics RM May Nature 261 (5560), 459-467
$\mathrm{N}_{\mathrm{t}+1}$ population density next generation
$\mathrm{N}_{\mathrm{t}} \quad$ population density initial $[0,1]$
r growth rate
$r \mathrm{~N}_{\mathrm{t}} \quad$ exponential growth
$-r N_{t}^{2}$ density dependent limit on growth

$X_{t+1}=\lambda X_{t}\left(1+X_{t}\right)^{-\beta}$

Rare species are favoured demographically
The Janzen-Connell hypothesis: seedlings are more likely to be dispersed near their parent, but more likely to survive far from their parent.

Importance of Seed Dispersal for Plants

Distance from parent tree

Number of articles citing Janzen (1970) or Connell (1971) between 1970 and 2013 (total =1976).
$a=100, b=0.4, x=0.9, z=0.001$

Density dependency: recruitment increases with distance from mother tree

Trichilia tuberculata

The effect of a conspecific neighbour on seedling survival is negative and varies among species according to their abundance:

 rare species suffer more their conspecific neighbours than common species [which may explain their rarity]

Effects of conspecific and heterospecific neighbors on seedling survival. [BCI in Panama]. Bars to the left of the dashed zero line indicate species whose survival is reduced by increasing density of neighbors.

Liza S. Comita, et al. Asymmetric Density Dependence Shapes Species Abundances in a Tropical Tree Community. Science 329:330, 2010

Neighbour effect on survival by conspecific seedling for tree species on BCI is correlated with their abundance

Fig. 7-16 Actual patterns of seed fall and seed and seedling survival three months after fruit frop in the toucan dispersed tree, Virola surinamensis, in Panama. Seed and seedling mortalty due to Conotrachelus weevil infestations are so heavy under the crown that the seed fall and seedling survival curves cross at the crown edge, $10-15 \mathrm{~m}$ from the tree base. Not ;urprisingly, adults of this species are clumped, with an average nearest neighbor distance of 18 m . Overall, there is a 40 -fold advantage to seed dispersal only 45 m from fruiting Virola rees. Data from Howe et a. (1985).


```
- Seed specialist \(-\square\) - All frugivores

\section*{Fungal infection may have Janzen-Connell effect}

Negative relationships between \(\mathrm{dNt} / \mathrm{dN} 0\) and initial density indicate NDD.
Overcompensation when \(\mathrm{dNt} / \mathrm{dN} 0<0\).


Bagchi, R et al. (2010). Ecology Letters 13: 1262-1269.




\section*{Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest}



\section*{Seed traps at BCI}

\author{
slope <1 \(\rightarrow\) density-dependent recruitment
}

Figure 1 The relationship between the seed density and recruit seedling density for Trichilia tuberculata (Meliaceae). The slope of the log-log relationship is less than 1 , indicating that recruitment is negatively density dependent. Nonetheless, recruit density increases with seed density. Each symbol represents a census station(s) consisting of one \(0.5-\mathrm{m}^{2}\) seed trap and three \(1-\mathrm{m}^{2}\) seedling plots. Symbol size is proportional to the number of stations (ranging from one to six) with identical counts of seeds and recruits.

Hubbell et al. 1999. Science 284:554


Figure 2 The frequency distribution of the exponent of the relationship between recruit density and seed density for 53 species of shrubs, trees and lianas. All exponents were less than 1 and the median was 0.23 , suggesting that strong negative density dependence characterizes seedling recruitment.


No. of species per 10 randomly selected trees: comparison between
A - those which died and survived B - recruits and large survivors C - small and large survivors

In all cases the latter group was more diverse, which means the forest diversity increases over time as dying trees are less diverse than those surviving, and this trend continues as survivors grow in size

Nonrandom Processes Maintain Diversity in Tropical Forests










distance- and densitydependent mortality occurs in plant communities worldwide. natural enemies are frequently the cause of such patterns, consistent with the JanzenConnell hypothesis
significant support for both the distance- and density-dependent predictions.
survival rates reduced near conspecifics compared to far from conspecifics, and in areas with high densities of conspecifics compared to areas with low conspecific densities.
unrelated to latitude, and there was no significant effect of study region. stronger distance and density dependence in wetter sites effects were significantly stronger at the seedling stage compared to the seed stage.
natural enemies are frequently the cause of such patterns, consistent with the Janzen-Connell hypothesis, but additional studies are needed to rule out other mechanisms (e.g. intraspecific competition).



The effect of (a) absolute latitude, (b) precipitation and (c) study duration on the log odds ratio of survival of seeds and seedlings in a meta-analysis of experimental tests of density and distance dependence. The size of each point is proportional to the precision of the estimate. In panels (a) and (b), tropical (circles) and temperate (triangles) studies are indicated.

So, what are the most promising theories to explain high species richness in tropical forests?
- niche differences
- infrequent competition in rare species
- Janzen-Connell effects, particularly for pathogens
- negative density dependence for abundant species
- mass effects and dispersal limitation
- disturbance

But no single effect is strong enough to provide overall explanation
```

BIOTROPICA 36(4): 447-473 2004

```

\section*{Why Do Some Tropical Forests Have So Many Species of Trees?'}

Egbent Giles Leigh dr.
Smithsonian Tropical Research insthile, Unit 0948, APO AA, 34002-0948, U.S.A

\section*{Priya Davidar}

Salim Ali School of Ecology and Enveonmental Science, Pondcherry Unversky, Kalapel, 605014 Pondcherry. India

\author{
Christopher W. Dick
}

Smithaonian Tropical Research Instotle, Unit 0948, APO AA 34002-0948, U.S.A Jean-Philippe Puyravaud
Dept. of Ecology and Evolution, State Unwersty of New York at Stany Brook, Stony Brook, New Yoek 11794, USA

\section*{John Terborgh}

Cemter for Tropical Conservation, Duke University, Box 90381, Durham, North Carolina 27708, U. 8 A
Hans ter Steege
Natonal Herbanum of the Netherlands. Utrecht University Branch. Heideberglaan 2. 3584 CS Utrecht, The Nefterliands

Stuart Joseph Wripht
Smitheonian Tropical Research instlute, Unit 0948, APO AA 34002-0948; U.S.A.

\section*{ABSTRACT}
 whar factose drive use specianion and what gomems a mee dades divessification nate. Many seport that hytrid merility


 nesie begin is unall populations, specien thar are now common must have spead moer quikkly than chance allows Pecie begin as unail populations, species ther ane now common must have spead moer quikty ctun chance allows, for sifferent miccohaboras, different--ized dearings, different soils and dimaxes, and resistance to different pess. Thess




 oppoitunities for local coevistence

100 Journal of Ecology

\section*{SPECIAL FEATURE - STANDARD PAPER}

\section*{META-ANALYSIS IN PLANT ECOLOGY}

Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distanceand density-dependent seed and seedling survival

Liza S. Comita \({ }^{1,2,}\), Simon A. Queenhorough \({ }^{\top}\), Stephen J. Murphy \({ }^{\dagger}\), Jenalle L. Eck \({ }^{\dagger}\), Kalyang \(\mathrm{Xu}^{1}\), Meghna Krishnadas \({ }^{1}\), Noelle Beckman' and Yan Zhu \({ }^{4}\)


 raccees Cima

\section*{Summary}

The lauen-Cintell hypothesis pmposes that specialis nutual enmies, mit an lietivers mat
 and seellings hected done to mpeodective abilts or in aetan of tigh ocospecific dessity. Vaisionin




 pedictiuss of te lauen-Coroell hypotheie.
3. Orensil, we foond ugnibciat mppoet for boch the diunnce- and denuiry-dependent predictioes.






 lage stapr ampued to the seed sape




 nunce of deverity in phant commerities.

Abstract Evidence concerming mechanisms hypothesized to explain species coexistence in hyper-diverse communities is reviewed for tropical forest plants. Three hypotheses receive strong support. Niche differences are evident from non-random spatial distributions along mi-cro-topographic gradients and from a survivorshipgrowth tradeoff during regeneration. Host-specific pests reduce recruitment near reproductive adults (the JanzenConnell effect), and, negative density dependence occurs over larger spatial scales among the more abundant species and may regulate their populations. A fourth hypothesis, that suppressed understory plants rarely come into competition with one another, has not been considered before and has profound implications for species coexisrence. These hypotheses are mutually compatible. Infrequent competition among suppressed understory plants, niche differences, and Janzen-Connell effects may facilitate the coexistence of the many rare plant species found in tropical forests while negative density dependence regulates the few most successful and aburdant species.

Recommended additional reading for interested students

\section*{Plant diversity in tropical forests: a review of mechanisms of species coexistence}```

