Mechanisms maintaining high species diversity
In tropical rainforests

Photo G. Weiblen
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Table 1. The communities used as the richest in vascular plant species at a range of spatial grains.
Area (m?) Richness Method Community Region References
0.25 44 Rooted Semi-dry basiphilous grassland Czech Republic Klimes et al. (2001)
1 89 Rooted Mountain grassland Argentina Cantero et al. (1999)
10 98 Shoot Semi-dry basiphilous grassland Romania Dengler et al. (unpubl.;
16 105 Shoot Semi-dry basiphilous grassland Czech Republic Z. Otypkova (unpubl.)
25 116 Shoot Sem?dry bas?philous grassland Czech Republ?c Z OtkaOV? (unpubl.) J. Veg. Sci. 23 (2012)
49 131 Shoot Semi-dry basiphilous grassland Czech Republic Z. Otypkova (unpubl.) 796-802
100 233 Rooted Tropical lowland rain forest Costa Rica Whitmore et al. (1985) Plant species richness:
1000 313 Rooted Tropical lowland rain forest Colombia Duivenvoorden (1994) the world records

10 000 942 Rooted Tropical rain forest Ecuador Balslev et al. (1998) Wilson JB et al
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Fig. 7.16 Rank-abundance patterns of tropical and temperate torests: A, remperate montane
(subalpme) forest (Smoky Mountains, Tennessee): B, temperate moist forest (Smokv
Mountamns, Tennessee): C, tropical wet forest { Manaus, Brazil); D, tropical dry torest
(Guanacaste. Costa Rical. (After Hubbell 1979.)



woody plant species richness

Latitudinal gradient in species diversity
woody plants with DBH>10cm in 1 ha forest plots
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Novotny et al. 2006, Science



1 ha of lowland rainforest = 150-300 tree species with DBH>10cm
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evergreen rain forests. (After Whitmore 1984a and
Genry 1988b).
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Alwyn Gentry’s plots: 2 x 50 m = 0.1 ha DBH>2.5cm, 226 plots
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Start of the most successful ecological research in tropical botany:
In 1980, Stephen Hubbell and Robin Foster had a good inventory

1 ha stems with DBH>5cm 50 ha stems with DBH>1cm
~1,000 stems . ~300,000 stems




Atlantic

Mecca of tropical ecology:
the Barro Colorado Island




Barro Colorado Island:
the first 50-ha plot
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Forest Dynamics Plots

 Large scale (16-52 ha)

 All stems =21 cm mapped, measured, tagged, and
identified to species

 Entire plot recensused every 5 years

« Standardized method used by all CTFS research sites



The Center for Tropical Forest Science network
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Current and projected future (2050) mean annual temperature
and precipitation of CTFS plots
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TrRF, tropical rain forest; TrSF/S, tropical seasonal forest/savanna; SD, subtropical desert; TeRF, temperate
rain forest; TeSF, temperate seasonal forest; W/S, woodland/shrubland; TeG/D, temperate grassland/desert;
BF, boreal forest; T, tundra

Teixeira et al., Global Change Biology (2014), doi: 10.1111/gch.12712
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Quadrats (20 mx 20 m)
& Subquadrats (5 m x 5 m)
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1,250 quadrats &
20,000 sub-quadrats
in 50 hectares




20 X 20 survey principals

horizontal distance
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204 plant stems
with DBH>1 cm
536 species

50 km of copper wire

288
500 kg of aluminium tags




Landsat satellite image of 50 ha plot in Wanang
Papua New Guinea







Pometia pinata
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Intsia bijuga
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Ficus

7.7% of all stems
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Numberof stems

18000

15000

12000 -

3

Ficus [40 spp.]

Genus rank

Dysoxylum [18 spp.]
Aglaia [15 spp.]
I I Chisocheton [11 spp.]

Celtis [2 spp.]




Celtis latifolia ! Pometia pinnata

8 Gnetum gnemon 100000
2 Gymnacranthera paniculata
Py Ficus bernaysii pg
3 Mastixiodendron paniculata 2
C -
é ' a Pimeleodendron amboinicum
S & % Intsia bijuga
O | Celtis latifolia
2
Species within 50 ha Species within 50 ha

No of stems per 50 ha
BA per 50 ha

Species within 50 ha Species within 50 ha
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Number of species
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Number of 20x20m quadrates
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Zofin Forest ~ Wanang, Papua New

Dynamic Plot Guinea
Nun“{ber of tree " 536
Species
Dominant tree _ L i . |
L Fagus sylvatica No dominant
Species
Area (ha) 25 50
Middle elevation (m) 780 120
Mean temp. (°C) 6.2 25.8
Annual prec. (mm) 866 4000
Years of census 2012 2010-2
Last tree count 64345 288204
DBH threshold (cm) ] |

Tree density: stems per ha 2,574 5,764
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How can there be be hundreds of tree species coexisting in tropical
forests when they all compete for the same solar energy and nutrients?

81181108%
T ¥ﬂ$o$

3333315

What prevents a single "superman" tree species, best adapted to local conditions, from
out-competing others and prevailing in the rainforest?




What prevents a single "superman" tree species, best adapted to local
conditions, from out-competing others and prevailing in the rainforest?

Each species Is limited by a different resource
[niche differentiation]

The environment is variable, changing direction of competition
[tree gap dynamics]

Immigration prevents competitive exclusion
[non-equilibrium community composition]

Species do not have opportunity to compete
[recruitment limitation]

Rare species are demographically favoured
[density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447473

Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.
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Shorea Keordersii Brandis

tre. I Schematic ecological range. in the wet zone forests of Sri Lanka, of the species of
eit. section Doona. Kev:  a, Shorea cordifelia b, S. gurdneri c. 5. zevlanica d. §.
s €. 5. frapecifolia £, S. megistophvila . 5. disriche  h. S.worthingtonii i, 8. con-

ilora SHOREA
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Shorea
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E. Generalist (S. ochraceae)

white, sandy loam
Russo, S. E., S. J. Davies,
D. A. King, and S. Tan.

2005. Journal of Ecology
93:879-889.
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white: disturbance
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Fig. 2 Topographic mapof the 25-ha plot. with 2-m contour intervals. Numbers marking cach line are metres above sea level. Six
habitats are indicated: valley (bluc), low-slope (green), high-gully (dark grey). upper-slope {light grey), ridge-top (yellow), and
scoondary forest (white). Axes are marked in metres; north is up.

Distribution of plants with respect to topography and habitats

Lowland rainforest, Yasuni National Park, Peru

Valencia, R. et al. 2004. Journal of Ecology, 92,
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of tree species:

blue - significant

red - not significant

A: valley x upper slope

B: mid-slope x valley

Valencia, R. et al. 2004. Journal of Ecology, 92, 214



Tropical forests: do ecologically similar species occur together, or avoid each other?
Habitat filtering:

/ =
== MV should select for particular trait values

| trees with low SLA (specific leaf area) grow on ridge
tops, while valleys have species with high SLA within 25
ha forest plot in Yasuni. Each habitat has smaller range of
SLA values than expected for random distribution of
species.

e

Coexistence of dissimilar species:

should select for variability in trait values

Within each habitat, tree species co-occurring within a
20x20 m quadrat had wider range of SLA than expected
under random distribution of trees among quadrats.

Range of log [SLA (cm?/g)]
14 1.6

1.2

1.0

B | B R o W i i s vl s b g S, e e
50 100 160 200 = : BUTIIIATIR
Quadrat richness = Kraft et al. 2008 Science 322: 580




What prevents a single "superman" tree species, best adapted to local
conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource
[niche differentiation]

The environment is variable, changing direction of competition
[tree gap dynamics]

Immigration prevents competitive exclusion
[non-equilibrium community composition]

Species do not have opportunity to compete
[recruitment limitation]

Rare species are demographically favoured
[density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447473

Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.



Intermediate Disturbance Hypothesis

Two possible mechanisms: lwg !ﬁwﬁ“%g A |

disturbance

NS -

- removes dominant species opening
thus an opportunity for others

- creates new habitat [for pioneer spp.]

> Wet forest
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Low Disturbance High

Bongers et al. 2009: The intermediate disturbance hypothesis applies to tropical forests,
but disturbance contributes little to tree diversity. Ecology Letters,12: 798-805
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Diversity peaks at
intermediate
disturbance levels but
little variation is
explained outside dry
forests

points = 1ha tropical forest
plots [2504 plots],

NPLD = non-pioneer light
demanding spp.
Disturbance index = % of
trees that belong to the
pioneer species
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FIGURE 25.2. Diagrammatic classification of tree species according 1o
maximum growth rate (slow v. fast) and projected lifespan (short v, long). Group
I: understory species, Group II: slow-growing subcanopy species, Group 11 fast-
growing, shade-tolerant canopy and subcanopy species that respond
opportunistically to increased light levels: Group [V: putative shade-intolerant
cancpy and subcanopy species.




Ramforests are dynamic
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Dynamic forests are more diverse: the mean mortality matters
300

A

YA R

L1oC

200- o Mim S pio
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Dynamism, %/vear

F1G. 1. (A) Tree species richness vs. dynamism (mean of annual
mortality and recruitment). (B) Tree species richness predicted by
multivariate regression model vs. observed tree species richness. O,
Sites in South-East Asia; m, sites in Amazonia; X, sites in *‘Other”’
phytogeographical regions (Africa, Australia, and Central America).
See Table 1 for complete site descriptions, Table 4 for multivariate
model.
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demographic range (log units)

Demographic differences facilitate species richness: more species would coexist in plots with
higher variability in growth and mortality among species — not confirmed in 50-ha plots
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e Sapling annual mortality
and growth rate in 4 forests
[saplings dbh<10cm for
mortality and <5cm for
growth]
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Range of sapling demographic rates
(mortality, growth) for tree species
within a community versus the number
of species at the site. The range is the
logarithm of the ratio between

the 97.5 and 2.5 percentiles of the fitted
distributions

Variability in mortality &
growth does not matter

Condit, R et al. (2006). The Importance of Demographic
Niches to Tree Diversity." Science 313: 98.



What prevents a single "superman" tree species, best adapted to local
conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource
[niche differentiation]

The environment is variable, changing direction of competition
[tree gap dynamics]

Immigration prevents competitive exclusion
[non-equilibrium community composition]

Species do not have opportunity to compete
[recruitment limitation]

Rare species are demographically favoured
[density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447473

Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.
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Fig. 4 The transitory maintenance of community diversity by
chance (vertical axis) decays rapidly as the |J||:||J|:||11|:|n of deaths
determined by chance declines and the proportion determined by
species-specific causes increases (harizonfal axis). Hubbell {19749)
simulated the indicated conditions. In contrast, Yu et al. {1998)

simulated conditions similar to those at the opposite extreme along

the horizontal axis. | used annual probabilities of mortality ob-
served for different tree species on BCI (Condit et al. 1995) for
species-specific deaths and equal probabilities for every individual
regardless of species for chance deaths and for all births, Follow-
ing Hubbell { 1979}, the simulated community included 600 trees
mitially divided among 40 equally abundant species with 160 tree
deaths per model iteration

Wright 2001. Oecologia 130:1

2,20
Migration rate = 010

E‘

225
2
i=]
0
-E 220 Migration rate = 0.005
0
E 215 Migration rate = 0
)
E 240l  Number of communilies = 10
Y Mumbsar of s pecies = 10
o Lozl eommunily slze = 100

Deaths par genaration = 10
2.05 T T T T 1
o] 2000 4000 G000 000 10000
Time

Figure 1. Decline in Shannon-Wiener species diversity in
simulated neutral communities composed of ecologically
equivalent species. Simulations were run for 10,000 time
steps, where 10 death/replacement events constituted a
single time step. Initial abundances of species were
identical within each of ten local communities. Species
diversity was calculated at each time step for each
community and then averaged across communities.
Higher migration rates slow the decline in species
diversity.

Mass effect
(Immigration)
slows down loss of
species from the
community due to
competition



What prevents a single "superman" tree species, best adapted to local
conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource
[niche differentiation]

The environment is variable, changing direction of competition
[tree gap dynamics]

Immigration prevents competitive exclusion
[non-equilibrium community composition]

Species do not have opportunity to compete
[recruitment limitation]

Rare species are demographically favoured
[density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447473

Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.



Seed traps at BCI:

evidence for dispersal limitation,

Number of Traps

& .
Bm___. ormostof the tree species does
10 15 20 25 30 35 20 45 50 55
not get to most of the places most

Number of Species Per Trap )
of the time

240 '_ |
ﬁ = 260 Spoaies

Mumber of Traps
¥ i

0 il 100 150 200 250
Species Rank

We also thark
0. Calderon for counting and identifying =105 seeds
in the seed traps over the years.

Fig. 4. Evidence for dispersal limitation in BCI
trees from a 10-year seed trap study using 200
traps in the 50-ha plot. Seeds of a total of 260
species of the 314 species in the plot census

were collected at least once. [A) Frequency

distribution of the number of species capturad
per trap during the 10-year trapping period
(1987-96). The average number of species per
trapwas 30.8 = 7.5 5D. (B) The total number of
traps into which each species dispersed at least
one seed during the 10-year trapping period.

Hubbell et al. 1999. Science 284:554



20x20m plot in Wanang
DBH>1cm

220 stems
85 species
40 singletons

Most common species:
16 stems (7.3%)
Aphanamixis polystachia

85 spp from the species pool of 536
spp (15.9%)

3,570 locally possible pair-wise
Interactions from the total of 143,380
(2.5%)



Aphanamixis polystachia
(Meliaceae): the most common tree sp.

Nearest neighbours:
4 conspecific trees and 9 other spp

Aphanamixis polystachia
Cryptocarya multipaniculata
Maniltoa megalocephala
Pittosporum sp.
Actinodaphne nitida
Articarpus sepicanus
Harpulia longipetala
Macaranga punctata
Mastixiodendron pachycladus
Planchonella xylocarpa
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What prevents a single "superman" tree species, best adapted to local
conditions, from out-competing others and prevailing in the rainforest?

Each species is limited by a different resource
[niche differentiation]

The environment is variable, changing direction of competition
[tree gap dynamics]

Immigration prevents competitive exclusion
[non-equilibrium community composition]

Species do not have opportunity to compete
[recruitment limitation]

Rare species are demographically favoured
[density-dependent mortality, predation and parasitism]

Recommended reviews:
Leigh et al. 2004. Why Do Some Tropical Forests Have So Many Species of Trees? Biotropica 36: 447473

Wright, S. J. 2002. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130: 1-14.



Negative density-dependency: four mechanisms

* Intra-specific self-thinning

* Inter-specific competition

» Mortality due to density-responsive pests/pathogens
» Mortality due to distance-responsive pests/pathogens

Yoda’s power law

mean plant biomass = ¢ * density-3/2

W?23*N = constant




Density-dependence of reproductive rate [r]
and species coexistence
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two species differ in their r, which is density independent
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two species differ in their r, which is density dependent

two species coexist at densities where they have identical value of r

Muller-Landau 2008 in Carson & Schnitzer: Tropical Forest Community Ecology
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Nt+1 — I‘Nt - I‘Ntz
Nes1 = FPPNF(1 - Ny)

Nt+ 1 population density next generation
Nt population density initial [0,1]

I growth rate

I‘Nt exponential growth
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The roots of social inequality problem:
the dynamics of money is
positively density dependent

% BARCLAYS
@ 1.006 A
+ 1.005 A
z 2 1.004 P i
Current interest rates c
§ 1.003
c 3¢
Balance Gross pa% % 1.002
£1 - £24.969 _— = 1.001 y = 1E-18x" - 5E-13x? + 7E-08x + 1.0025
R*=1
£25,000 - £49,999 0.40 1
£50,000 - £99,999 0.50 0 25000 50000 75000 100000
£100,000 + 0.60 N (amount of money)

Newy = Np * (rp + 1071%%N? - 5%1079*N? + 7*¥107°*N)



Distribution of Wealth in the U.S,, 2001

ol

Top IS own 335
Next 4% own 26%
Next 5% own 12%

Next 10% own 135

Nexe 20% awn 1IN

Middie 20% cwn 4%

Next 12% own 0%

Bottom 1 8% have rero
or negative fet worth
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2
Neyy = FNg = N Simple mathematical models with very complicated dynamics
PN (1 = Ny) RM May Nature 261 (5560), 459-467
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Rare species are favoured demographically
The Janzen-Connell hypothesis: seedlings are more likely to be dispersed
near their parent, but more likely to survive far from their parent.

Importance of Seed Dispersal for Plants

Probability of seed survival

Many seeds \

t['l« cdlation

Seeds or seedlings (number)

~
\\\
~~ ‘s\~ Seed distribution
a7 Recruitmenl\\\ e
W o s h‘L—

Distance from parent tree



Number of publications

140

120

100

80

60

40

20

oA TP s D]

S ?@?@1@%‘?@%@@@@@@@%@@@@@@@@@@@@Q@E@E@i@i@ﬁ@i SENTENS

1 1
&

Number of articles citing Janzen (1970) or Connell (1971) between 1970 and 2013 (total = 1976).

Comita et al. 2014, Journal of Ecology, 102, 845-856



Importancs of Sasd Disparsal for Plants
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Density dependency:
recruitment increases
with distance from mother tree
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The effect of a conspecific neighbour on seedling survival is negative
and varies among species according to their abundance:
rare species suffer more their conspecific neighbours than common species
[which may explain their rarity]

o o
S A Conspecific seedling 2B Conspecific adult
' : Liza S. Comita, et al. Asymmetric Density Dependence Shapes Species Abundances in a Tropical
Tree Community. Science 329:330, 2010
Neighbour effect on survival by conspecific seedling for
2 tree species on BCI is correlated with their abundance
3]
Q
Q.
w
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Effects of conspecific and heterospecific neighbors on seedling L o
survival. [BCI in Panama]. Bars to the left of the dashed zero
line indicate species whose survival is reduced by increasing T T T T , ; T
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fig. 7-16  Actual patterns of seed fall and seed and seedling survival three months ater fruit
frop in the toucan dispersed tree, Virola surinamensis, in Panama. Seed and seedling mortal-
ty due to Conotrachelus weevil infestations are so heavy under the crown that the seed fall
ind seedling survival curves cross at the crown edge, 10-15 m from the tree base. Not
surprisingly, adults of this species are clumped, with an average nearest neighbor distance of
18 m. Overall, there is a 40-fold advantage to seed dispersal only 45 m from fruiting Virola

re«~. Data from Howe et a. (1935).
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Fungal infection may have Janzen-Connell effect

Negative relationships between dNt/dNO
and initial density indicate NDD.
Overcompensation when dNt/dNO < 0.

--- Control —— Fungicide --- Control —— Fungicide
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Bagchi, R et al. (2010). Ecology Letters 13: 1262-1269.
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Negative plant—soil feedback predicts tree-species
relative abundance in a tropical forest

Seedling biomass after 5 months in experiments in soil from
conspecific -heterospecific trees

Tetragastris panamensis

BClI forest Brosimum alicastrum
Yy— I 3
O
0 al
3o 2
S E
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S o
8N 1
/)]
§’ g Virola surinamensis.
r2 =063 n=6,P=0.058
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Figure 1 The relationship between the seed density and recruit seedling density for
Trichilia tuberculata (Meliaceae). The slope of the log—log relationship is less than 1,
indicating that recruitment is negatively density dependent. Nonetheless, recruit density
increases with seed density. Each symbol represents a census station(s) consisting of one
0.5-m? seed trap and three 1-m? seedling plots. Symbol size is proportional to the number
of stations (ranging from one to six) with identical counts of seeds and recruits.

Hubbell et al. 1999. Science 284:554



Number of species
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Figure 2 The frequency distribution of the exponent of the relationship between recruit
density and seed density for 53 species of shrubs, trees and lianas. All exponents were

less than 1 and the median was 0.23, suggesting that strong negative density -
dependence characterizes seedling recruitment.
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Tree mortality increases
species diversity

No. of species per 10 randomly selected trees:
comparison between

A - those which died and survived

B - recruits and large survivors

C - small and large survivors

In all cases the latter group was more diverse,
which means the forest diversity increases over
time as dying trees are less diverse than those
surviving, and this trend continues as survivors
grow in size

Nonrandom Processes Maintain
Diversity in Tropical Forests
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SPUCIAL FEATURE ~ STANDARD PAPER
META-ANALYSIS IN PLANT ECOLOQY

Testing predictions of the Janzen-Connell hypothesis:
a meta-analysis of experimental evidence for distance-
and density-dependent seed and seedling survival

Liza 5. Comita'™, Simon A, Ouesnborough', Stegen J. Murphy', Jenalle L. Bick', Katyang
Xu', Meghes Keishnaces', Nostle Beckman™ s Yan 2’

distance- and density-
dependent mortality
occurs in plant
communities world-
wide. natural enemies
are frequently the
cause of such
patterns, consistent
with the Janzen—
Connell hypothesis

distance and
density studies (154)

distance studies only (120)

density studies only (34)

tropical (95)
temperate (59)

tropical America (61)
temperate America (33)
tropical Asia (16)

Category

temperate Asia (19)

Europe (7)
Asia (35)
America (94)
Africa (18)

seedling (63)
seed (91)

Effect sizes are indicated by points [filled
circles are significantly different from].
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significant support for both the distance- and density-dependent predictions.
survival rates reduced near conspecifics compared to far from conspecifics, and in areas with
high densities of conspecifics compared to areas with low conspecific densities.

unrelated to latitude, and there was no significant effect of study region.
stronger distance and density dependence in wetter sites
effects were significantly stronger at the seedling stage compared to the seed stage.

natural enemies are frequently the cause of such patterns, consistent with the Janzen—Connell
hypothesis, but additional studies are needed to rule out other mechanisms (e.g. intraspecific
competition).

(a) | (b) |

In(OR)

- - . " e Sl
0 1000 2000 3000 4000 5000
Precipitation (mm)

Absolute latitude ()

The effect of (a) absolute latitude, (b) precipitation and (c) study duration on the log odds ratio of survival of
seeds and seedlings in a meta-analysis of experimental tests of density and distance dependence. The size of
each point is proportional to the precision of the estimate. In panels (a) and (b), tropical (circles) and
temperate (triangles) studies are indicated.



So, what are the most promising theories to explain
high species richness in tropical forests?

- niche differences

- Infrequent competition in rare species

- Janzen-Connell effects, particularly for pathogens
- negative density dependence for abundant species
- mass effects and dispersal limitation

- disturbance

But no single effect is strong enough to provide overall explanation

A
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Plant diversity in tropical forests:
a review of mechanisms of species coexistence

nance of dowersity In plant commuenities.
Abstract Evidence concerming mechmmsms  hypothes
sized to explain species coexistence in hyper-diverse
comumunities 1s reviewed for tropical forest plants. Three
hypotheses receive strong support. Niche differences are
evident from non-random spatial distributions along mi-
cro-topographic gradients and from a survivorship-
growth tradeoff dunng regeneration. Host-specific pests
reduce recruutment near reproductive adults (the Janzen-
Connell effect), and, negative density dependence occurs
over larger spatial scales among the more abundant spe-
cies and may regulate their populations, A fourth hy-
pothesis, that suppressed understory plants rarely come
into competition with one another, has not been consid-
ered before and has profound implications for species
coexistence, These hypotheses are mumally compatible.
Infrequent competition among suppressed understory
plants, niche differences, and Janzen-Connell effects
may facilitare the coexistence of the many rare plant spe-
cies found in tropical forests while negative density de-
pendence regulates the few most successful and abun-
dant species.
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