


Global patterns of coral species diversity
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Conditions required by coral reefs:

* high water temperature (>14 °C)

» substrate available in euphotic zone
* low nutrient concentration

« HCO, available

o low turbidity and sedimentation



Fig. 2. Current global distribution of reef framework—forming cold-water corals [modified from (1)].
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Large rivers are
not coral-friendly
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CALCIFICATION ORIGINATED
SEVERAL TIMES

- TABULATA: Cambrian - Triassic 500 - 200 My
- RUGOSA: Ordovician - Permian 450 - 250 My
- SCLERACTINIA: Triassic - Recent 200 -0 My



Growth forms of corals
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Coral ecology

« The polyps form a skeleton made of calcium carbonate
* They are colonial
 Live symbiotically with photosynthetic dinoflagellates
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Coral reefs and
rainforests:
Intense competition
for space and light




Coral competition and aggression:
mesenterial filaments, or longer-range sweeper tentacles (often developed
In response to a competitor), and short-range allelopathic chemical attack

B &

Lettuce coral Agaricia sp

Folyps of same v/
reody 10 do battle

A. Experiment with native coral Mussismilia
hispida and invasive Tubastraea coccinea. B
mesenterial filaments produced by both native
corals, C detail of mesenterial filaments, D
necrosed area on native coral

T. Carefoot, http://www.virtualcoralreefdive.com/ Dos Santos et al. J. Exp. Marine Biol. Ecol. 449 (2013) 69-76
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Porifera: e
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Porifera: the ability to form calcareous skeleton evolved several times
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S Fig. Box 3.4 (a) The ability to form a calcareous skeleton analogous to that found in corals has

evolved independently in many groups of sponges, especially within the classes Demospongiae and
Calcarea. (Medified from Vacelet 1883)




Association with photosynthetic algae is common in reef animals
Dinoflagelates are associated with:

Foraminifera
Radiolaria
Porifera

SN
wernet  Anthozoa: corals

Anthozoa: anemonesiies

Turbellaria

Mollusca



Main stages in reef development
fringing reef barrier reef




Reef Coral island Lagoon

A \ Lagoon
Sea

Freshwater
lens

Seawater Mixing zone

Moorea Island, Polynesia — fringing reef



Madang lagoon (New Guinea): coral barrier next to mainland

700 spp. of fishes, 800 spp. of nudibranchs, etc.
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Cavity size External sedimentation rate

Energy
Internal sedimentation rate

Baffling and trapping ability
Secondary encrustation
Diversity

Rt | Coral growth rate 2-7 mm/yr

Fig. 6.7 Generalized environmental preferences and ecological consequences of constratal and suprastratal growth.



b Acropora hyacinthus

Mechanical resistance of coral morphologies
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huricanes
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Square meter plot
1963 - 1974

.

20 meter line transects

10 38 80 . . 0
% Cover of Live Coral

Species diversity of reefs:
medium-disturbance hypothesis

Fig, 2. Species diver-
sity of corals in the
subtidal outer reef
siopes at Heron Is-
land, Queensland. (A)
Changes over |11

years on one of the

plots on the north
slope. The number at
cach point gives the
years since the first
census &t year 0 (no
censuses were made
it years 3, 5, and 10).
The dashed lines in-
dicale changes caused
9y hurricanes in 1967
and 1972, (B) Results
from line trapsects
cone 3 10 4 months af-
ter the 1972 hurris
cane, (&) Date from
the heavily damaged
rorih slopes; (Q) data
fram the undamaged
south slope: the line
drawn by eye. Where
disiurbances had ei-
ther great or little ef+
fect (very low or high
Fercent cover, respec:
tively) there were few
ipecies, with maxi-
mum  oumbess of
ipecies at intermediale
levels of disturbance.



Coral reefs require grazing of algal biomass

Negative feedbacks
(too little grazing intensity)
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Variable coral morphology
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Fig. 6.2 The variety of coral morphology found on modern reefs showing the flexibility of multiserial growth. 1: Cup-shaped =
soft coral; 2: columnar; 3: free-living; 4: digitate; 5: encrusting; 6: corymbose; 7: caespitose; 8: bottlebrush; 9: massive;

10: foliaceous (cup-shaped); 11: foliaceous (forming a whorl); 12: tables and plates; 13: massive; 14: arborescent (staghorn);
15; arborescent (elkhorn). (Modified from Veron 1986; copyright, John Sibbick.)
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Fig. 3.35 Reconstruction of an Indo-Pacific coral reef. 1: Brain coral (Leptoria phrygia); 2: feather star (Comanthus
bennetti); 3: Parrotfish (Scarus sp.); 4: Staghorn coral (Acropora sp.); 5: Emperor Angelfish (Pomacanthus imperator);

6: Gorgonian; 7: vase sponge (Callyspongia sp.), 8: anemone with clown fish; 9: giant clam (Tridacna gigas); 10: encrusting
corals (Montipora and Hydnophora); 11: brittle star (Ophiarachella gorgonia); 12 and 13: sea urchins; 14: cowrie; 15: sea
cucumber (Thelenota ananus); 16: sea star; 17: boring bivalve (Lithophaga); 18: cement botryoids; 19: internal sediment;
20: cone shell (Conus textile); 21: wrasse (Coris gaimard.) (Copyright, John Sibbick )
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CORALLIVORES

| | e
[ ‘
Balistidae Tetraodontidae
(triggerfishes) (puffers)
HERBNORES

Acanthuridae Siganidae
(surgeonfishes) (rabbitfishes)

17.1  Main families of larger bodied medern reef fishes. (Redrawn from Nelson 1984.)

Reef fishes:

Indo-Pacific alone has some
3,000 species, 1.e. 18% of all
fish species

Reef fishes form a circumtropical assemblage with characteristic morphologies and
ecologies. Many reef fish recruit directly onto reefs and remain within very specific habitats
during their entire lives.

The most striking feature of coral reef fishes is their diversity: although the greatest
diversity is developed in relatively few taxa, an estimated 3000 species of fishes live
associated with coral reefs in the Indo-Pacific alone (Springer 1982), representing 18%
of all living fishes, Most are advanced perciform teleosts: perciforms comprise 86% of the
20 most speciose families, and are overwhelmingly the most abundant individuals on reefs,
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Faunal boundaries proposed for reef fish taxa

Blum, 1989



Coral Triangle: epicenter of marine biodiversity,

>2700 species of shore flshes and 600 species of corals
(b)Fishes - observed

Bellwood
et al
(2005).

] N . Ceters &

>0 >100 >200 >300 >400 >500 >600 643-651.




Coral triangle — global species diversity hotspot

Center of Accumulation model: speciation in peripheral locations with
subsequent dispersal into the Coral Triangle. The long history of the
Pacific archipelagos, isolation in peripheral habitats, and current and
wind patterns that favor dispersal towards the Coral Triangle have been
suggested as a mechanism.

Center of Overlap model: overlap of distinct faunas from the Pacific
and Indian Oceans, the isolating mechanism being the Indo-Pacific
Barrier, which separates the Pacific and Indian Oceans during low sea-
level stands

Center of Speciation model: diversity hotspots such as Coral Triangle
are exporters of species, driven by the fracture of populations that
result from geologic complexity and habitat heterogeneity coupled
with intense competition.

Bowen et al. TREE 2013, 28: 359
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Species from the Indonesian & Philippine Region (IPR) dominate
reef fish communities in the Indian and Pacific oceans
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Figure 4 Contribution of IPR and endemic spacies to local reef fish assemblages in the
1 Indian and Pacific oceans. Fillad circles, IPR species; open circles, endamic spacies.
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Species richness

reef fishes

Endemic species
(range <10° km?)

v no endemic sp.

Hughes et al. 2002
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Marine biodiversity hotspots:
moving over past 50 million years

Foraminifera hotspots:

A: 39-42 mil. years before present
B: 16-23 mil. years before present
C: at present

@14 @58 ©09-12 ©13-16 @ >16

Fig. 2. Congruent biogeographic patterns are characterized by multiple taxa within the

IAA biodiversity hotspot. Evidence exists from the molecular genetics of (A) fishes and

the fossil record of (B) mangroves, (C) larger benthic foraminifera, and (D) corals.
St ke o s Renema et al. 2008, Science 321: 654
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There have always been reef building organisms,
albeit from different taxa
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140 M ars Rudist bivalves
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ig. 6.11 A substantial monospecific aggregation of the large Cretaceous rudist Vaccinites vesicularis. The view probably h

hows a succession of communities. Individual size is remarkably uniform within each community suggesting that it grew

5 a consequence of colonization of adults of the same species by larval spat-falls that showed philopatric behaviour.

)n the basis of well-preserved growth bands, it has been estimated that such rudists had a life span of between 20 and

A vear e 2t 3ACR0 i on Oman. Hammer = 32 cm lonqg. (Photegraph: D. Schumann.)




Fig. CS 3.4 Reconstruction of Silu

(Heliolites); 3: tabulate cor

(Atrypa); 7: crinoid; 8: brachiopod (Leptaena),

(Actinostroma); 12: throm

430 M years

rian (Wenlock) patch reef, Fngland. 1: Tabulate coral (Favosites); 2: tabulate coral

al (Halysites); 4: bryozoan (Hallopora); 5: streptelasmatid rugose coral; 6: spirifid brachiopod
9: trilobite (Dalmanites); 10: orthocone nautiloid; 11: stromatoporoid

bolite. (Madified from McKerrow 1978; copyright, John Sibbick )
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w * Figure I Reconstruction of a Lower Cambeian reef community (from 97). |, Renalcis (calci-

-‘-_ = fied cyanobacterium); 2: branching archacocyath sponges; 3. solitary cup-shaped archaeocyath

7. sponges; 4: chancellorid (?sponge); 5: radiocyath (?sponge); 6. small, solitary archaeocyath

3 y sponges; 7: cryptic ‘coralomorphs’; 8: Qkulitchicyathus (archaeocyath sponge); 9; early fibrous
cement forming within crypts; 10: microburrows (traces of a deposit-feeder) within geopetal sedi-
ment; | 1: cryptic archaeocyaths and coralomosphs; 12: ¢ryptic cribricyaths (problematic, attached

skeletal tubes); 13: trilobite trackway; 14: cement botryoid; 15: sediment with skeletal debris.

535 M years




Threats to coral reefs:

» coral bleaching

» destructive fishing

e nutrients and sediments

. increasing CO2 concentration in atmosphere

.__"\-

Fig. 7.3 Crown-of-thorns starfish
(Acanthaster plancif) feeding on the branching
coral Acropora. (Photograph: R. Steene.)
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Ocean acidification
and coral building

Fig. 1. (A) Linkages between the buildup of atmospheric CO, and the slowing
of coral calcfication due to ocean acidification. Approximately 25% of the
€O, emitted by humans in the period 2000 to 2006 (9) was taken up by the
ocean where it combined with water to produce carbonic acid, which releases a
proton that combines with a carbonate ion. This decreases the concentration of
carbonate, making it unavailable to marine calcfiers such as corals. (B) Tem-
perature, [CO,},,,, and carbonate-ion concentrations reconstructed for the past
420,000 years. Carbonate concentrations were calculated (54) from CO; 4, and
temperature deviations from today’s conditions with the Vostok Ice Core data set
(5), assuming constant salinity (34 parts per trllion), mean sea temperature

Hoegh-Guldberg, O. 2007. Science 318:1737



Once dissolved in seawater, CO, reacts with water, H,O, to form
carbonic acid, H,CO,. Carbonic acid dissolves rapidly to form H* ions
and bicarbonate, HCO,~. Seawater is naturally saturated with another
base, carbonate ion (CO,%") that acts to neutralize the H+ forming more
bicarbonate HCO3—, decreasing thus carbonate saturation in water.

Carbonate levels predicted to drop as ocean acidifies

Saturation state of aragonite (a form of calcium carbonate)

0 1 2 3 B 5

Exposed shells and
skeletons likely to dissolve



